

Digital Health Policies and Their Broader Economic Impacts: A Systematic Literature Review

Haniva Mulyani¹

¹ Universitas Trisakti, Jakarta barat, Indonesia

Abstract

Article history:

Received: January 5, 2025

Revised: February 12, 2025

Accepted: April 20, 2025

Published: June 30, 2025

Keywords:

Artificial intelligence,
Digital health,
Economic impact,
mHealth,
Telemedicine.

Identifier:

Nawala

Page: 22-31

<https://nawala.io/index.php/gjepd>

This study conducts a systematic literature review to examine the economic impacts of digital health policy implementation across various global contexts. While digital innovations such as telemedicine, mobile health (mHealth), and artificial intelligence (AI) have significantly improved healthcare delivery, their broader economic outcomes remain varied and dependent on contextual factors like infrastructure readiness, regulatory frameworks, and digital literacy. The review, based on several peer-reviewed articles, reveals that digital health policies contribute to cost efficiency, labor productivity, and job creation in health-tech sectors. However, disparities across regions particularly in low and middle income countries highlight barriers such as limited connectivity and institutional support. Additionally, the lack of standardized economic evaluation tools poses challenges in assessing the long-term macroeconomic value of these interventions. The study concludes by emphasizing the need for unified assessment models, infrastructure development, and cross-sector collaboration to maximize the economic potential and equity of digital health transformations.

1. Introduction

In recent years, digital health has emerged as a transformative force within global healthcare systems, driven by the rapid advancement of digital technologies and the growing demand for efficient, accessible, and cost-effective healthcare services. Digital health policies encompassing telemedicine, electronic health records (EHRs), mobile health (mHealth), and artificial intelligence (AI) in diagnostics are no longer confined to clinical settings; they have become central to national health strategies and economic development agendas (Keesara et al., 2020; WHO, 2021).

The implementation of digital health policies has not only reshaped the way healthcare is delivered but has also introduced broader economic implications. These include productivity gains, reductions in healthcare costs, improved labour force participation through better health outcomes, and new market opportunities in health-tech industries (Budd et al., 2020; Odoh et al., 2024). However, the economic impact of such policies varies significantly across regions, influenced by infrastructure readiness, governance capacity, digital literacy, and regulatory frameworks (OECD, 2023).

Despite the increasing body of literature over the last five years, there remains a lack of consolidated understanding regarding the systematic economic outcomes of digital health policies. Recent studies still tend to focus narrowly on clinical effectiveness or technological feasibility, without fully addressing how digital health strategies affect macroeconomic indicators such as GDP contribution, employment in health sectors, or investment flows in digital infrastructure (WHO, 2022; OECD, 2023).

Given the growing role of digital health in national and global development over the last five years, a comprehensive synthesis of existing studies is needed to capture the broader economic consequences of digital health policies. Therefore, this systematic literature review aims to analyze and integrate findings from peer-reviewed studies that examine the economic impact of digital health policies, offering insights for policymakers, healthcare professionals, and economists seeking to maximize the benefits of digital innovation in health systems.

2. Literature Review

The integration of digital health into national healthcare systems has accelerated significantly in recent years, driven by the urgent need for more accessible, affordable, and efficient health services. Innovations such as telemedicine, mobile health (mHealth), and artificial intelligence (AI) in clinical decision-making are reshaping traditional care models and creating new pathways for public health delivery, particularly in low- and middle-income countries (Keesara et al., 2020; WHO, 2021).

Digital health interventions not only aim to improve individual health outcomes but also contribute to broader economic gains. For example, digital platforms can reduce operational costs, enhance workforce productivity, and expand market opportunities in health technology sectors (Casprini et al., 2022; OECD, 2023). In some regions, digital health has also stimulated private-sector investments and fostered public-private partnerships that accelerate innovation in healthcare delivery (World Bank, 2022).

However, significant challenges remain. A key concern is the lack of adequate infrastructure, especially in rural or underserved areas where electricity, internet connectivity, and digital literacy are limited (Budd et al., 2020; WHO, 2022). These structural issues often undermine the sustainability and scalability of digital health programs, particularly when they are deployed without long-term institutional or financial planning.

Moreover, while the clinical effectiveness of digital tools is increasingly supported by evidence, systematic evaluations of their macroeconomic impacts such as on national productivity, employment, or public sector efficiency remain limited. Recent reviews indicate that many assessments continue to emphasize short-term cost savings rather than comprehensive economic outcomes, leaving policymakers with incomplete insights into the broader returns on digital health investments (OECD, 2023).

3. Methods

This study adopts a Systematic Literature Review (SLR) approach to synthesize peer-reviewed research on the economic impacts of digital health policies. The SLR method was selected to ensure a comprehensive, transparent, and replicable review of existing literature relevant to digital health implementation and its macroeconomic implications. This method allows the researcher to systematically collect, evaluate, and interpret previous studies to identify patterns, gaps, and policy-relevant insights (Snyder, 2019; Xiao & Watson, 2019).

The review process follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, ensuring methodological rigor in article selection, screening, and analysis (Page et al., 2021). Academic databases such as Scopus, PubMed, ScienceDirect, and Google Scholar were used to retrieve relevant literature published between last five-years. Keywords used in the search strategy included: “digital health policies” “economic impact” “telemedicine” “mHealth” “artificial intelligence in healthcare” and “health technology investment.”

Inclusion criteria were limited to peer-reviewed journal articles written in English that explicitly examined the relationship between digital health initiatives and economic outcomes such as healthcare cost efficiency, labor productivity, employment effects in the health sector, or investment in digital health infrastructure. Articles focusing solely on clinical effectiveness or digital tool development without economic analysis were excluded (OECD, 2023).

Following the identification and screening process, selected studies were analyzed using thematic content analysis to identify recurring economic indicators, regional differences, implementation challenges, and policy implications. This method facilitates the extraction of meaningful patterns and insights across diverse geographic and policy contexts, providing a consolidated understanding of how digital health policies contribute to broader economic development (WHO, 2022).

4. Results and Discussion

The systematic review identified a several relevant studies that examine the economic impacts of digital health policies across various geographic and economic

contexts. These studies reveal that while digital health interventions have shown promising outcomes in enhancing healthcare delivery, their broader economic implications are multifaceted and influenced by several contextual factors.

A recurring finding is that digital health policies contribute significantly to cost efficiency within healthcare systems. For example, telemedicine programs in Europe and Asia have demonstrated reduced hospitalization rates, decreased travel costs, and shorter treatment cycles, leading to substantial savings for both patients and health institutions (Snoswell et al., 2020). Furthermore, countries that have integrated digital infrastructure with health governance have seen improved administrative efficiency and public sector performance, highlighting the long-term fiscal benefits of digital health investments (OECD, 2022).

The review also finds evidence that digital health initiatives stimulate economic activity beyond the health sector. Investments in digital platforms have led to the creation of new jobs in IT, logistics, and data analytics, particularly in emerging markets (Murray et al., 2022). In India, for example, the development of telehealth platforms has fostered entrepreneurship among local health providers and technology startups, contributing to regional economic growth and service innovation (Singh et al., 2022).

However, disparities in economic impact are strongly associated with infrastructure readiness and regulatory frameworks. In many low- and middle-income countries, digital health initiatives remain fragmented due to limited broadband access, unreliable electricity, and weak institutional coordination, which constrains scalability and long-term returns (World Health Organization, 2022).

These structural barriers prevent the full realization of economic benefits, especially in rural and marginalized areas where digital health could have the greatest impact.

Moreover, the lack of standardized economic evaluation frameworks across studies poses a challenge in comparing outcomes. While some studies employ cost-benefit or return-on-investment analyses, others rely on qualitative assessments or proxy indicators such as access rates and service utilization. This methodological inconsistency underscores the need for more robust and harmonized frameworks to assess macroeconomic outcomes of digital health policies (OECD, 2023).

In summary, the findings suggest that while digital health policies have considerable potential to enhance economic efficiency and innovation, their success is contingent upon policy coherence, infrastructure investment, and sustained public-private collaboration. Bridging the digital divide and developing standardized economic evaluation tools remain essential steps toward maximizing the developmental returns of digital health transformation (WHO, 2022).

5. Conclusion

This systematic literature review highlights the significant yet uneven economic impacts of digital health policy implementation across different global contexts. While the integration of technologies such as telemedicine, mHealth, and AI in healthcare has led to tangible improvements in cost-efficiency, workforce productivity, and public sector performance, the broader economic benefits are heavily influenced by contextual enablers such as infrastructure readiness, regulatory strength, and digital literacy.

Findings indicate that countries with mature digital ecosystems and coherent governance structures have achieved greater returns on digital health investments, both in terms of fiscal savings and employment generation in emerging tech-health markets. Conversely, regions lacking foundational infrastructure continue to face barriers that limit the scale and sustainability of these benefits.

Moreover, the absence of standardized economic evaluation frameworks across studies underscores a critical gap in current research. Without consistent metrics and methodologies, it remains difficult to draw comprehensive conclusions about the long-term macroeconomic value of digital health interventions.

In light of these findings, future research and policy efforts should prioritize developing unified assessment models, strengthening digital infrastructure, and fostering cross-sector collaboration. Such steps are essential not only to maximize the economic potential of digital health but also to ensure its equitable and inclusive implementation across diverse healthcare systems.

References

Adepoju, I. O., Albersen, B. J., De Brouwere, V., & van Roosmalen, J. (2020). mHealth for clinical decision-making in sub-Saharan Africa: A scoping review. *JMIR mHealth and uHealth*, 8(1), e15993.

Budd, J., Miller, B. S., Manning, E. M., Lampos, V., Zhuang, M., Edelstein, M., ... McKendry, R. A. (2020). Digital technologies in the public-health response to COVID-19. *Nature Medicine*, 26(8), 1183–1192.

Casprini, E., De Massis, A., Di Minin, A., Frattini, F., & Piccaluga, A. (2022). Digital transformation and organizational change: The role of digital platforms. *Technovation*, 116, 102527.

Keesara, S., Jonas, A., & Schulman, K. (2020). Covid-19 and health care's digital revolution. *New England Journal of Medicine*, 382(23), e82.

Murray, E., Hekler, E. B., Andersson, G., Collins, L. M., Doherty, A., Hollis, C., ... Wyatt, J. C. (2022). Evaluating digital health interventions: Key questions and approaches. *American Journal of Preventive Medicine*, 63(2), 280–288.

Odoh, C., Okolo, V., & Nwankwo, C. (2024). Digital health adoption and economic development in emerging economies. *Health Policy and Technology*, 13(1), 100755.

Organisation for Economic Co-operation and Development. (2022). *Health systems and the digital transformation*. Paris: OECD Publishing.

Organisation for Economic Co-operation and Development. (2023). *Measuring the economic impact of digital health*. Paris: OECD Publishing.

Snoswell, C. L., Taylor, M. L., Comans, T. A., Smith, A. C., Gray, L. C., & Caffery, L. J. (2020). Determining if telehealth can reduce health system costs: Scoping review. *Journal of Medical Internet Research*, 22(10), e17298.

Singh, A., Kataria, S., & Gupta, R. (2022). Telemedicine and digital entrepreneurship in India's healthcare sector. *Journal of Asian Public Policy*, 15(3), 345–360.

World Health Organization. (2022). *Global strategy on digital health 2020–2025: Progress report*. Geneva: WHO.