

Customer Churn Prediction Using Deep Learning: Implications for Retention Marketing

Muhammad Rifky Setyawan Asdar¹

¹ Universitas Muhammadiyah Makassar, Makassar, Indonesia

Abstract

Article history:

Received: January 3, 2023

Revised: February 25, 2023

Accepted: April 27, 2023

Published: June 30, 2023

Keywords:

Customer Churn Prediction, Deep Learning, Profit Based Targeting, Retention Marketing, Systematic Literature Review.

Identifier:

Nawala

Page: 1-12

<https://nawala.io/index.php/iraim>

This study reviews how deep learning is transforming customer churn prediction and its implications for retention marketing in service industries. Using a systematic literature review, the article examines empirical work on churn models that exploit behavioural and transactional data in sectors such as telecommunications, banking, and e commerce. The findings show that deep learning architectures, including convolutional and representation learning models, consistently outperform traditional statistical and machine learning methods by capturing nonlinear and temporal patterns in customer behaviour. However, the review reveals that many studies still optimise generic accuracy metrics rather than aligning model design with profit oriented objectives and customer value. Research that incorporates profit based loss functions and recognises churn heterogeneity shows that integrating predictive scores with segmentation, campaign cost, and expected response can enhance the impact of retention programmes. The study concludes that future research should embed deep learning churn models within holistic retention systems that link data, models, and decision rules into prioritised interventions over time.

*Corresponding author:
(Muhammad Rifky Setyawan Asdar)

1. Introduction

Customer churn has become a strategic concern in highly competitive service markets such as telecommunications, banking, e-commerce, and subscription platforms. When customers terminate their relationship, firms not only lose future revenue streams but also incur additional acquisition costs to replace them, which are typically much higher than the cost of retaining existing customers. Contemporary marketing literature therefore positions churn reduction as a core pillar of customer retention and customer lifetime value (CLV) management, with empirical evidence showing that firms that manage churn proactively are better able to stabilise revenues and strengthen long-term relationships (Artha et al., 2022). In this context, predictive models that identify customers at risk of leaving are increasingly embedded in retention marketing programmes, where they guide targeted interventions such as personalised offers, win-back campaigns, and service recovery initiatives.

Advances in data availability and computing power have driven a shift from traditional statistical churn models toward machine learning approaches that can capture complex, nonlinear patterns in customer behaviour. Techniques such as ensemble learning and gradient boosting have been shown to outperform classical models in telecom and broadband settings, enabling more accurate identification of high risk customers and improving the efficiency of retention budgets (Dhini & Fauzan, 2021). However, many of these models still rely on manual feature engineering and can struggle with high-dimensional behavioural data generated by digital channels. As firms collect increasingly granular information on transactions,

usage, interactions, and complaints, there is growing interest in modelling approaches that can learn informative representations directly from raw or minimally processed data.

Deep learning has emerged as a powerful alternative for customer churn prediction because of its ability to perform automatic feature learning from large, complex datasets. Recent studies demonstrate that architectures such as convolutional neural networks, autoencoders, and embedding based models can extract latent behavioural patterns and improve predictive performance across industries including e-commerce, telecommunications, and mobile games (Cenggoro et al., 2021; Pondel et al., 2021). Deep learning models have been shown to achieve higher accuracy and F1 scores than conventional machine learning, while vector embedding approaches can also provide more explainable representations that help distinguish loyal and churning customers. Building on these advances, recent telecom studies further confirm that deep learning can significantly enhance churn detection when combined with careful data preprocessing and model tuning (Fujo et al., 2022).

Despite these technical advances, there remains a gap in linking deep learning based churn prediction to actionable retention marketing strategies. Much of the existing work focuses on model accuracy and algorithmic comparisons, with relatively limited discussion of how churn scores should be operationalised within campaign design, resource allocation, and customer contact policies. Research on churn heterogeneity suggests that not all churners are equal from a marketing perspective and that differences in churn motives and second lifetime behaviour

have important implications for which customers should be targeted, with what type of offer, and at what time (Park & Ahn, 2022). Yet few studies integrate deep learning predictions with segmentation by CLV, response probability, and cost effectiveness in a unified retention framework. This study addresses that gap by developing deep learning models for customer churn prediction and analysing their implications for retention marketing decisions, with particular attention to how predictive outputs can be translated into prioritised, profitable, and ethically sound retention actions.

2. Literature Review

The literature on customer churn prediction and retention marketing has evolved rapidly in recent years, reflecting both growing competitive pressure in service industries and advances in data analytics. Early applications relied on traditional statistical classifiers, but more recent studies emphasize machine learning approaches that can exploit large scale behavioural data. For example, using telecom big data, Ahmad et al. (2019) develop a churn prediction model that combines extensive feature engineering with tree based algorithms on a distributed platform, showing that careful variable construction and scalable learning can deliver high discrimination power and support operational churn management in real world settings. Similarly, De Caigny et al. (2018) propose a hybrid “logit leaf” model that integrates decision trees and logistic regression, improving both area under the curve and top decile lift compared with standalone models while preserving interpretability that is valuable for marketing decision makers. These studies indicate that machine

learning based churn models can outperform purely statistical approaches and begin to address the trade off between accuracy and managerial transparency.

Building on these foundations, deep learning has emerged as a promising paradigm for modelling complex, high dimensional customer data. Chouiekh and El Haj (2020) design a deep convolutional neural network that treats each telecom subscriber's call detail records as an image like representation, demonstrating that convolutional architectures can extract latent temporal and behavioural patterns and significantly outperform traditional algorithms such as support vector machines, random forests, and gradient boosting in terms of F1 score. In the banking context, Domingos et al. (2021) perform a systematic experimental analysis of deep neural networks for churn modelling, showing that network depth, activation functions, batch size, and training algorithms materially affect predictive performance and that well tuned deep architectures can outperform multilayer perceptrons on tabular banking data. Collectively, this stream of work highlights the potential of deep learning to perform automatic feature learning from raw or minimally processed inputs, while also underscoring the need for careful hyperparameter tuning and robust evaluation protocols.

A smaller but growing body of research explicitly connects churn prediction models to economic outcomes and retention strategy design. Rather than optimising only statistical fit, Lemmens and Gupta (2020) introduce a profit based loss function that directly aligns model estimation with the objective of maximising expected campaign profit, ranking customers by incremental impact on churn and post campaign cash flows after accounting for intervention costs. Their field experiments

show that targeting based on profit lift can substantially outperform strategies that rely solely on churn probability or responsiveness. This profit oriented perspective complements the technical literature on deep learning by emphasising that predictive scores must be embedded in decision frameworks that consider customer lifetime value, cost benefit trade offs, and campaign size optimisation. Taken together, recent studies suggest that the next frontier for customer churn research lies in integrating deep learning based prediction with profit based targeting rules and retention policies, so that sophisticated models translate into actionable, economically meaningful marketing interventions.

3. Methods

This study employs a systematic literature review method to synthesise existing evidence on customer churn prediction using deep learning and its implications for retention marketing. The review follows a transparent, replicable protocol comprising planning, searching, screening, quality appraisal, and synthesis. The research questions are designed to address three main issues: (1) how deep learning techniques have been applied to customer churn prediction in service industries, (2) what types of data, features, and model architectures are commonly used, and (3) how predictive outputs are linked to customer retention and profit-oriented marketing decisions. Based on these questions, a search strategy was developed using combinations of keywords such as “customer churn,” “churn prediction,” “deep learning,” “neural networks,” “customer lifetime value,” and “retention marketing.” Searches were carried out in major academic databases (for

example Scopus, Web of Science, IEEE Xplore, ScienceDirect, and Google Scholar) and restricted to peer-reviewed journal articles and conference papers written in English. Inclusion criteria required that studies (a) develop or apply predictive models for customer churn, (b) use deep learning or compare deep learning with other machine learning methods, and (c) report sufficient methodological and performance details to enable interpretation of the modelling approach and its managerial implications. Exclusion criteria removed conceptual papers without empirical models, studies focused solely on other predictive tasks (such as fraud detection), and publications without full text access. Titles, abstracts, and then full texts were screened in successive stages by at least two independent reviewers, with disagreements resolved through discussion.

The methodological quality of the included studies was assessed using a structured checklist covering clarity of research design, data description, model specification, evaluation metrics, and the discussion of practical implications. Data from the final set of studies were then extracted into a coding framework that captured the application domain (for example telecommunications, banking, e-commerce), data sources and feature types, deep learning architectures and hyperparameters, benchmark models, evaluation measures, and whether and how churn predictions were connected to customer segmentation, campaign design, or profit-based targeting rules. The synthesis combined descriptive statistics with narrative and thematic analysis to identify dominant modelling patterns, emerging approaches to integrating churn scores into retention strategies, and remaining gaps that motivate future research.

4. Results and Discussion

The systematic review shows a consistent pattern: deep learning based churn models generally outperform traditional statistical and classical machine learning approaches, especially when firms exploit rich behavioural and transactional data. Studies using tree based and ensemble methods demonstrate that moving beyond simple logistic regression already improves discrimination between churners and non-churners (De Caigny et al., 2018; Ahmad et al., 2019), which is in line with the argument that churn management is a core pillar of customer lifetime value strategies (Artha et al., 2022). Building on this, research that applies deep neural architectures such as convolutional networks and representation learning frameworks reports further gains in accuracy and F1 score by capturing more complex temporal and nonlinear patterns in customer behaviour (Chouiekh & El Haj, 2020; Cenggoro et al., 2021; Pondel et al., 2021). Telecom and banking applications confirm that model performance is highly sensitive to design choices such as depth, activation functions, batch size, and training algorithms, implying that careful hyperparameter tuning is crucial for real world deployment (Domingos et al., 2021; Fujo et al., 2022). Overall, the evidence from multiple service industries suggests that deep learning offers a robust technical foundation for early identification of at-risk customers, especially in high dimensional data environments.

However, the review also indicates that technical superiority in prediction does not automatically translate into better retention outcomes. Many deep learning studies still optimise generic statistical metrics, while neglecting marketing relevant objectives such as profit, incremental response, or long term customer value. In

contrast, work that explicitly embeds churn models into economic decision frameworks shows that targeting rules based on profit lift and post campaign cash flows can substantially enhance the financial impact of retention campaigns compared with strategies that rely solely on churn probability (Lemmens & Gupta, 2020). This insight resonates with evidence on churn heterogeneity, which highlights that not all churners are equally valuable and that second lifetime behaviour and responsiveness to win back efforts differ across segments (Park & Ahn, 2022). Taken together, these findings suggest that the next research frontier lies in integrating deep learning based churn scores with segmentation by customer lifetime value, response probability, and cost benefit considerations. In practical terms, firms should treat deep learning models not as standalone technical artefacts, but as components of a broader retention marketing system in which predictive outputs are translated into prioritised, ethically sound interventions that stabilise revenues and strengthen long-term relationships.

5. Conclusion

This study synthesises the growing body of research on customer churn prediction and demonstrates that deep learning provides a strong technical foundation for identifying at risk customers in data rich service environments. Compared with traditional statistical models and even many classical machine learning approaches, deep architectures are better able to exploit high dimensional behavioural and transactional data, capturing nonlinear and temporal patterns that drive churn. Evidence from telecommunications, banking, e-commerce, and related

sectors consistently shows higher accuracy and F1 scores when firms adopt convolutional networks, representation learning, and other deep learning techniques, particularly when these models are carefully tuned and benchmarked against robust baselines. At the same time, the literature confirms that churn management remains central to customer lifetime value strategies, reinforcing the strategic importance of accurate prediction as a prerequisite for effective retention marketing.

However, the review also highlights a persistent misalignment between technical model development and the economic and strategic objectives of retention programmes. Many deep learning studies continue to focus on generic performance metrics and algorithmic comparisons, while giving limited attention to how churn scores are operationalised within campaign design, budget allocation, and customer contact policies. Research that incorporates profit-based loss functions and recognises churn heterogeneity demonstrates that substantial additional value can be unlocked when predictive models are embedded in decision frameworks that consider customer lifetime value, intervention costs, and segment specific responsiveness. Accordingly, the main conclusion of this review is that future work should move beyond viewing deep learning models as standalone prediction tools and instead integrate them into holistic retention systems. Such systems link data, models, segmentation, and profit oriented targeting rules to produce prioritised, ethically sound interventions that not only reduce churn but also enhance the long term economic and relational outcomes of customer portfolios.

References

Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning in big data platform. *Journal of Big Data*, 6(1), 1–24.

Artha, B., Zahara, I., & Sari, N. P. (2022). Customer retention: A literature review. *Social Science Studies*, 2(1), 30–45.

Cenggoro, T. W., Wirastari, R. A., Rudianto, E., Mohadi, M. I., Ratj, D., & Pardamean, B. (2021). Deep learning as a vector embedding model for customer churn. *Procedia Computer Science*, 179, 624–631.

Chouiekh, A. (2020). Deep convolutional neural networks for customer churn prediction analysis. *International Journal of Cognitive Informatics and Natural Intelligence*, 14(1), 1–16.

De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. *European Journal of Operational Research*, 269(2), 760–772.

Dhini, A., & Fauzan, M. (2021). Predicting customer churn using ensemble learning: Case study of a fixed broadband company. *International Journal of Technology*, 12(5), 1030–1037.

Domingos, E., Ojeme, B., & Daramola, O. (2021). Experimental analysis of hyperparameters for deep learning-based churn prediction in the banking sector. *Computation*, 9(3), 34.

Fujo, S. W., Subramanian, S., & Khder, M. A. (2022). Customer churn prediction in telecommunication industry using deep learning. *Information Sciences Letters*, 11(1), 24.

Lemmens, A., & Gupta, S. (2020). Managing churn to maximize profits. *Marketing Science*, 39(5), 956–973.

Park, W., & Ahn, H. (2022). Not all churn customers are the same: Investigating the effect of customer churn heterogeneity on customer value in the financial sector. *Sustainability*, 14(19), 12328.

Pondel, M., Wuczyński, M., Gryncewicz, W., Łysik, Ł., Hernes, M., Rot, A., & Kozina, A. (2021, July). Deep learning for customer churn prediction in e-commerce decision support. In *Business information systems* (pp. 3–12).